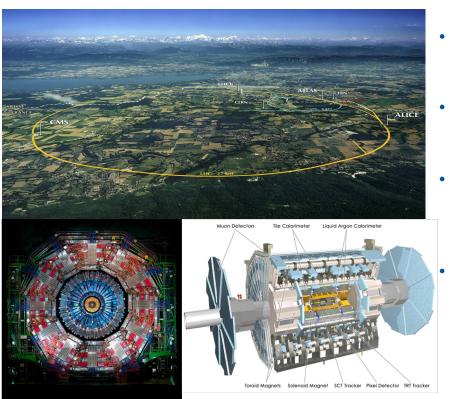


SIMPLE Grid Framework

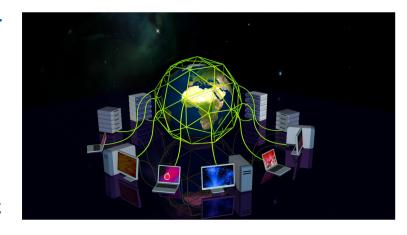
Mayank Sharma (CERN, speaker) Maarten Litmaath (CERN) Eraldo Silva Junior (CBPF, Brazil)

\$>whoami



- Software Engineer, CERN.
- Developer of SIMPLE Grid Framework.
- Google Summer of Code, Google Code-In
- Release Manager, OpenMRS Platform 2.0
- Hackathon/Startups/ IoT

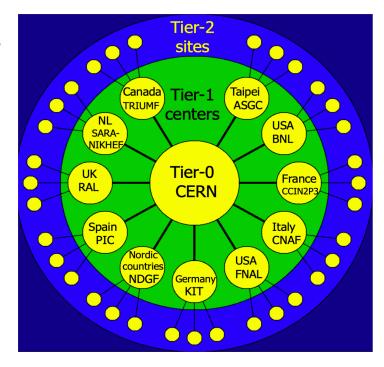
CERN: Quick overview



- Largest Particle Accelerator located on the Franco-Swiss border.
- LHC: A 27km long tunnel through which high energy particle beams are accelerated.
- Particle beams, travelling in opposite directions collide at 4 main experiments (Atlas, CMS, Alice and LHCb).
 - Popular contributions: Higgs Boson (2012), World Wide Web, Hardon Therapy (Medical Applications) etc.

The LHC challenge

- 50+ PetaByte/year (Raw data), 80+ PetaByte/year (Simulated/Derived data).
- Data Analysis requires ~500k typical CPU processor cores.
- Scientists spread around the world.
- CERN can provide 20-30% of CPU and storage.
- 70-80% are provided by Worldwide LHC Computing Grid (WLCG) providers.



The WLCG Answer

- 170+ Computing Centers, 35+ countries.
- 15 Large centres for long term data management
 - CERN = Tier-0
 - 14 Tier-1 Center
 - New: Korea, Russia
 - Fast Network Links
- 70+ federations of 140+ smaller Tier-2 centers.
- Tens of Tier-3 sites.
 - University resources dedicated to smaller physics groups

Read More here!

Diversity in WLCG

Types of WLCG services and middleware packages.

Technologies preferred by site admins for managing their infrastructure

Site Admin's Perspective

- Lightweight Sites Survey: http://cern.ch/go/rhV9
- 51 Sites responded to the questionnaire that shows potential benefits of shared repositories
- Conclusion:
 - Most sites still require classic grid services which can be complicated to configure/deploy
 - Simpler mechanisms for orchestration of sites utilizing modern infrastructure tools will be beneficial
 - Strong support for Docker, Puppet, OpenStack images

SIMPLE SIES

- Solution for Installation, Management and Provisioning of Lightweight Elements
- Support diversity in WLCG sites with minimal oversight and operation efforts
- Keep functionality the same, but easier for site admins to setup and maintain

Principles

One node to configure the site

DRY (Don't Repeat Yourself)

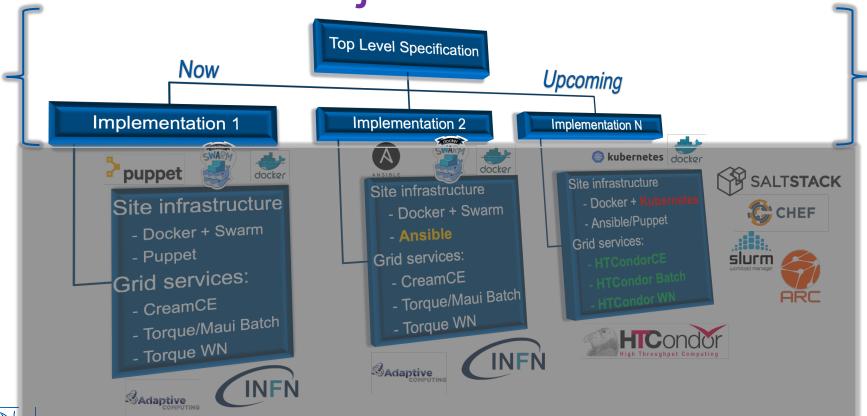
Modularity

What SIMPLE Grid does

- Set up a grid site with O(100) lines of YAML
- Modular and easy to extend to support other grid services
- Community Driven: Open source and open discussion channels.

Wait, but what am I doing here?

- We took our abstraction, modularity and extensibility principles too seriously!
- With a few lines of YAML, you can create a complex computing cluster that runs your desired software packages and services.
- Application Beyond CERN: Economics/ Finance, Al/Machine Learning, Medicine/Microbiology IoT



Wait, but what am I doing here?

- 2 of 3 SIMPLE Core Components are python packages.
- Open Source and Community Driven.
- Develop a Robust core with SIMPLE Grid, Parallelly enable the community to lead other applications.

SIMPLE – Project Structure

CÉRN

SIMPLE – Lightweight Elements

Site Level Configuration **File**

SIMPLE

Component Repositories

Configuration Validation **Engine**

Central Configuration Manager

Site Level Configuration File

A single YAML file to describe:

Site-Infrastructure (Hostnames,

IP addresses, OS/Kernel,

Disk/Memory)

Service Components (What components to install and configure)

Background Technologies

(Puppet/Ansible, Docker/Kubernetes)

Specific to Grid Use-Case:

- Generic Site Info (Users,

Groups, Supported VOs)

- Misc. Site Info (Security emails, location etc.)

puppet

Component Repositories docker

- Publicly hosted repositories on GitHub that provide
 - Dockerized services that are executed on the Cluster.
 For instance, CE/WN/Batch/Squid etc.
 - Meta information for configuration of containers using different configuration management tools
- 1 repository for every cluster service (for the Grid use case, CreamCE, CondorCE, Torque, Slurm reside in separate repositories)
- Grid Examples: <u>CreamCE</u>, <u>TorqueWN</u>

YAML Compiler

- Minimize configuration requirements via
 - Variables
 - Sensible default values for site-level configurations
 - Ability to override values
 - support additional parameters not defined in the system
 - Builds on top of PyYAML and Ruamel
 - Split configuration into multiple logically related
 YAML files that can be shared

Configuration Validation

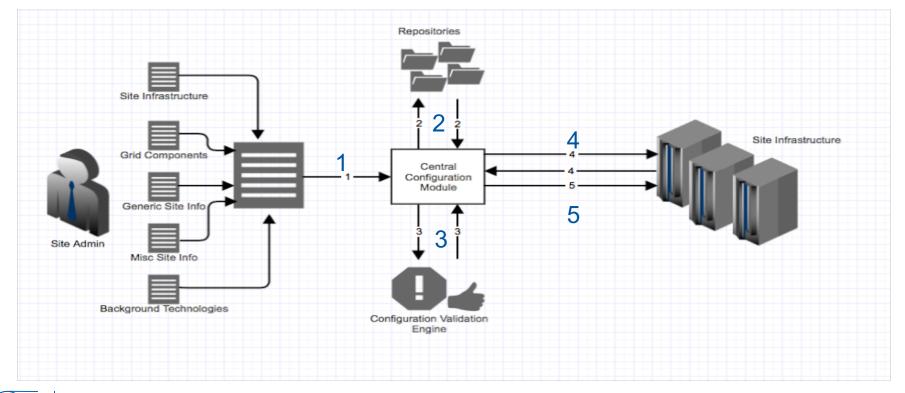
- Built on top of Yamale.
- Configuration validation engine to ensure information supplied in site configuration file:
 - meets the configuration requirements of desired site component
 - is realizable on the available infrastructure using available background technologies
- http://cern.ch/go/CvS8
- Possibility to inject custom validation rules

Compiler + Config Validation

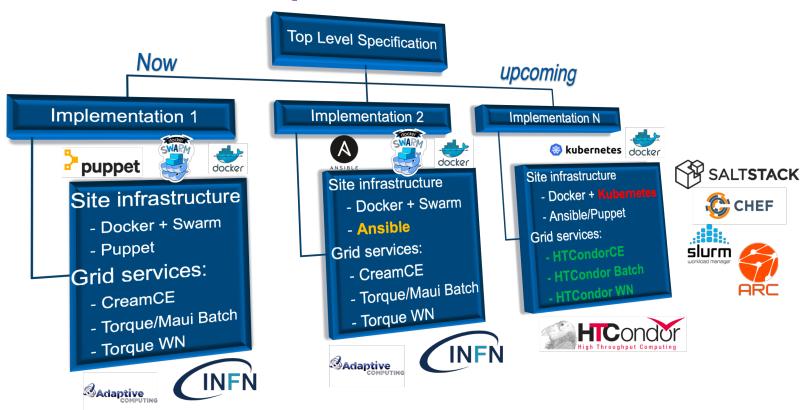
- New keywords:
 - __from__ : (Resolve complex anchor/variable hierarchies)
 - include : (Similar to import in python)
- Support for Runtime Variables
- Custom data types, schema files and default values.

Central Configuration Manager

- The main module for centrally configuring everything at the site
- Uses Validation Engine to check siteconfiguration file
- Checks status of available Site Infrastructure that needs to be orchestrated
- Installs and configures component repositories from the GitHub repositories


Central Configuration Manager

- Implements a Networking strategy (overlay/dedicated)
- Executes lifecycle callbacks on the Hosts and Containers of component repositories.
- Runs tests to check for success or failure of site configuration



Specification: Putting it Together

WLCG Example

Implementations

- Site Level Configuration File YAML Compiler
 - Python command line utility
- **Configuration Validation Engine**
 - Python command line utility
- **Central Configuration Management System**
 - **Puppet**
 - **Ansible**

Google Summer of Code 2018 Project

Alpha candidate developed by Tarang Mahapatra, University of British Columbia, Vancouver

Implementations

- **Repositories for Components**
 - Cream Compute Element + Torque Batch System
 - Torque Worker Node

- **Repositories for Other Applications**
 - Economics: Julia Gavrilenko (REU), Sergei Belov (JINR)
 - - But, How to support my use case? Create a new GitHub repository with your containerized services. The framework takes care of the rest!

The Open Source Community

Project Homepage

http://cern.ch/go/9IHd

GitHub Repositories

http://cern.ch/go/kr7p

Simple Grid Specification

http://cern.ch/go/8JLH

Technical Discussion List (E-Groups)

Name: WLCG-Lightweight-Sites-Dev

Link: http://cern.ch/go/l9wZ

Google Forum

Name: WLCG Lightweight Sites

Link: http://cern.ch/go/Hz7S

Mattermost (IM):

Team: WLCG

Name: WLCG-Lightweight-Sites

Link: http://cern.ch/go/8HWP

Conclusions

- Setup a robust and complex computing infrastructure with a few hundred lines of YAML description.
- Only standard SysAdmin know-how required.
- Focus on your code and not your infrastructure.
- Open Source and Community Driven!

Questions?

Sounds Interesting?

Let's talk:

mayank.sharma@cern.ch
maany

devmaany.co

in <u>eraldojunior</u>

in <u>ejunior@cbpf.br</u>

in <u>ejr004</u>

Important Links:

Website: https://wlcg-lightweight-sites.github.io

GitHub Org:WLCG-Lightweight-Sites

Mailing List: Google Groups

Wiki: CERN Twiki

Technical Roadmap (WLCG): CERN TWiki

Issue Tracking: <u>v1</u>

