
Migrate Python from 2.X to 3.X

WHO AM I?

PHILIPPE
BOULANGER

6,5 years in

CAD&Numeric

simulations

3 years in

embedded

programming

11,5 years in

finance

19,5 years in

Python

20,5 years in

C++

C++ & PYTHON DEVELOPER

@Pythonicien

CONCERNS

SOME
NEWS

▪ 2017

➢Instagram migrated major part of
its code to Python 3

▪September 2018

➢Dropbox announced the end of its
migration to Python 3 (they began in
2015)!

TECHNICAL ASPECTS (1/2)

▪ Support for Python 2.7 will stop soon

➢ January the 1st 2020

▪ Some libraries are no more compliant

➢ Django, numpy (2019), etc.

▪Python 4

➢ Will arrive in the next few years (2023 ?)

TECHNICAL ASPECTS (2/2)

▪ Asynchronous programming (asyncio)

▪ Consistency

➢ Return generator instead of containers

➢ Functional programming

DIFFERENCES (1/3)

Python 2 Python 3

print print ‘blabla' print(‘blabla’)

DIFFERENCES (1/3)

Python 2 Python 3

print print ‘blabla' print(‘blabla’)

raise raise IOError, ‘file error' raise IOError(‘file error’)

DIFFERENCES (1/3)

Python 2 Python 3

print print ‘blabla' print(‘blabla’)

raise raise IOError, ‘file error' raise IOError(‘file error’)

long
long(myvar)
5/2 = 2

int(myvar)
5/2 = 2.5
5//2 = 2

DIFFERENCES (2/3)

Python 2 Python 3

string unicode
str

str
bytes

DIFFERENCES (2/3)

Python 2 Python 3

string unicode
str

str
bytes

dict, map, zip
dict.items(): list
dict.keys()[0]
dict.iteritems()

dict.items(): dict_items
list(dict.keys())[0]
dict.items()

DIFFERENCES (3/3)

u’toto’
b’titi’
instruction unicode()
method __unicode__()
StringIO/BytesIO

UNICODE
MANAGEMENT

FINANCIAL ASPECT

▪ Migration costs?

➢ Heavy costs at short term

➢ Few costs at long term

▪ Costs to keep Python 2?

➢ No immediat costs

➢ Heavy cost at middle/long term

GOAL…

NON-REGRESSION

TESTS

▪ Is the migration a success?

▪ Are the performances as good as the
2.X version?

▪ What is the coverage of the tests?

▪ We need indicators!

HOW TO

VALIDATE THE

MIGRATION?

UNIT TESTS

▪ Use a unit test for a small part of code testing
(As a function).

▪ Utopic goal: have unit tests for all API.

FUNCTIONAL TESTS (1/2)

▪ Functional tests are more complex because
several API are linked but cover a real service or
functionality.

▪ Objective: cover most of the functionalities as
possible. Having a tool to mesure code coverage
will be useful.

FUNCTIONAL TESTS (2/2)

▪ The need to automate tests is increasing with
program size

▪ A functional test could be:

➢ A chain of API calls

➢ GUI actions (use of UFT/QTP)

PERFORMANCES TESTS

▪ You need to validate that migration keep the
application performances : algorithms used in
libraries could be replaced between versions,
some conflicts between libraries could appears…

➢ Load tests?

COVERAGE TESTS (1/2)

▪ Knowing the number of lines of codes tested when
all the tests are using (unit, functional or
performance)

https://coverage.readthedocs.io/en/coverage-4.5.1a

https://coverage.readthedocs.io/en/coverage-4.5.1a/

COVERAGE TESTS (2/2)

▪ According to my experience, with less than 60%
of covered code, the chance of having hidden
bugs is very important

▪ A good target is 80% of covered code
Target 80% of
covered code

GUI TESTS

▪ Test the GUI

- Either manual
- Or use tool like UFT (previous name: QTP)
- …

▪ Allow to automate test as if it was done by a
user

HUMAN TESTS

▪ A developer tests the code from a way which
corresponds to the implementation he done, a
real user tests according to its habits

➢Update GUI controls, click… raise events and
code execution and the order of calls can
change the behavior

➢human add random part inside tests

PERIMETER

PERIMETER?

?

ENVIRONMENT

OS DB

PYTHON
DISTRIBUTION

TOOLING

PROCESSOR

WHAT MODULES ARE LOADED? (1/2)

▪ Standard modules in Python?

▪ Modules which were developed in intern?

▪ What are the external modules?

WHAT MODULES ARE LOADED? (2/2)

▪ How to determine the list of dynamically loaded
modules… Available since Python 2.3.

AND THEN: PROBLEMS?…

▪ Is there module:

➢ with ended support or unmigrated?
➢ with modified API?
➢ licencing changed?
➢ library name changed?

NON-PYTHON MODULES

▪ Problems with C/C++ written modules

➢ C++ compiler migration
➢ porting C++ libraries
➢ tools problems (swig…)
➢ licences, etc…

MIGRATION

METHODOLOGY

▪ « Divide to reign »: it will be
better to migrate small groups of
files to minimize interactions.

▪ Create bundles in using module
dependencies (have a graph
should be useful), internal or
external module…

SPLIT IN

BUNDLES

PORTING EXTERNAL CODE (1/2)

▪ External code has no dependency with house-made
code: start with them will be a good idea.

▪ Take count of tools:

➢Compiler
➢ Integration tools in Python: swig, boost.python,

etc.
➢External libraries

PORTING EXTERNAL CODE (2/2)

▪ Library was ported or not?

▪ API changed?

▪ Licensing changed?

▪ Is there constraints according to the versions of
different libraries?

▪ Is source code available ?

ADD PYTHON 3.X CHANGES INSIDE

PYTHON 2.X CODE (1/3)

▪ from __future__ import division

- PEP 238: Changing the Division Operator

▪ from __future__ import print_function

- PEP 3105: Make print a function

ADD PYTHON 3.X CHANGES INSIDE

PYTHON 2.X CODE (2/3)

▪ from __future__ import absolute_import

- PEP 328: Imports: Multi-Line and Absolute/Relative

▪ from __future__ import unicode_literals

- PEP 3112: Bytes literals in Python 3000

ADD PYTHON 3.X CHANGES INSIDE

PYTHON 2.X CODE (3/3)

▪ Six : six.readthedoc.io

Python 2 Python 3 Six to add 3.X features in 2.X code

TOOLS (1/2)

▪ 2to3

mathilde@pc-moi~ 2to3 example.py
RefactoringTool: Refactored example.py
--- example.py (original)
+++ example.py (refactored)
@@ -1,9 +1,9 @@

- from urllib2 import urlopen
+ from urllib.request import urlopen

my_url = “http://pythonprogramming.net”

try:
x = urlopen[my_url].read()

- print x
-except Exception, e:
- raise IOError, "Error 404"
+ print(x)
+except Exception as e:
+ raise IOError("Error 404")

RefactoringTool: Files that need to be modified:
RefactoringTool: example.py

mailto:mathilde@pc-moi

TOOLS (2/2)

▪ 2to6

➢ Based on 2to3
➢ For compilancy between 2 and 3
➢ Add __future__, six

REFACTORING

REFACTORING (1/6)

▪ listdir vs scandir

REFACTORING (2/6)

▪ Use generators

REFACTORING (3/6)

▪ Comprehension containers

REFACTORING (4/6)

▪ String format

name = ‘‘Toto’’

‘‘My name is %s’’ % (name) # since 1.x

‘‘My name is {}’’.format(name) # since 2.0

f‘‘My name is {name}’’ # since 3.6

REFACTORING (5/6)

▪ JIT compiler: numba

REFACTORING (6/6)

▪ Cache strategy

TO CONCLUDE

AND NOW…

▪ Migrations are like children: each of them is
different

▪ Split in steps…

➢ After each step, TEST!!!!

▪ You will have difficulties but keep hope.

ENABLER
CONTACT

Philippe BOULANGER

Python Expertise Manager

Philippe.boulanger@invivoo.com

www.invivoo.com

www.blog.invivoo.com

www.xcomponent.com

BORDEAUX

Rue Lucien

Faure

33000

Bordeaux

LONDRES

Landsdowne House / City Forum

250 City Road – London EC1V

2PU

PARIS

13, Rue de

l’abreuvoir

92400 Courbevoie

mailto:benjamin.rault@invivoo.com
http://www.invivoo.com/
http://www.blog.invivoo.com/
http://www.xcomponent.com/

