Migrate Python from 2.X to 3.X

G A

WHO AM 1?

PHILIPPE
BOULANGER

g @Pythonicien

C++ & PYTHON DEVELOPER

6,5 years in |
CAD&Numeric 20,5 years in
simulations C++

3 years in ‘ 19,5 years in
embedded | Python
programming

11,5 years in

finance “1
1

INVIVOO

IT & Finance

CONCERNS

= 2017

r@ »Instagram migrated major part of
its code to Python 3

=September 2018

:} » Dropbox announced the end of its

migration to Python 3 (they began in
2015)!

TECHNICAL ASPECTS (1/2)

= Support for Python 2.7 will stop soon
» January the 1°t 2020

" Some libraries are no more compliant

» Django, numpy (2019), etc.

"Python 4

» Will arrive in the next few years (2023 ?)

TECHNICAL ASPECTS (2/2)

= Asynchronous programming (asyncio)

= Consistency
» Return generator instead of containers

» Functional programming

DIFFERENCES (1/3)

Python 2

Python 3

print

print ‘blabla’

print(‘blabla’)

DIFFERENCES (1/3)

Python 2 Python 3
print print ‘blabla’ print(‘blabla’)
raise raise |OError, ‘file error’ raise |IOError(‘file error’)

DIFFERENCES (1/3)

Python 2 Python 3
print print ‘blabla’ print(‘blabla’)
raise raise |OError, ‘file error’ raise |IOError(‘file error’)
long(myvar) int(myvar)
long 5/2=2 5/2=2.5

5//2=2

DIFFERENCES (2/3)

Python 2

Python 3

string

unicode
str

str
bytes

DIFFERENCES (2/3)

Python 2

Python 3

string

unicode
str

str
bytes

dict, map, zip

dict.items(): list
dict.keys()[0]
dict.iteritems()

dict.items(): dict_items
list(dict.keys())[O]
dict.items()

DIFFERENCES (3/3)

u’toto’
UNICODE ibn?ttrluction unicode()
MANAGEMENT

method unicode ()
StringlO/Bytes|O

FINANCIAL ASPECT

" Migration costs?

» Heavy costs at short term

» Few costs at long term

" Costs to keep Python 27

> No immediat costs

» Heavy cost at middle/long term

GOAL...

Python 2

25% All Python

Web developers

Data scientists

Oct 2017

NON-REGRESSION
TESTS

" |s the migration a success?

[|
HOW TO Are the .peqormances as good as the
VALIDATE THE 2.Xversion:

MIGRATION?

" \What is the coverage of the tests?
" We need indicators!

UNIT TESTS

" Use a unit test for a small part of code testing
(As a function).

= Utopic goal: have unit tests for all API.

FUNCTIONAL TESTS (1/2)

" Functional tests are more complex because
several APl are linked but cover a real service or
functionality.

" Objective: cover most of the functionalities as
possible. Having a tool to mesure code coverage
will be useful.

FUNCTIONAL TESTS (2/2)

" The need to automate tests is increasing with
program size

= A functional test could be:

» A chain of API calls
» GUI actions (use of UFT/QTP)

PERFORMANCES TESTS

" You need to validate that migration keep the
application performances : algorithms used in
libraries could be replaced between versions,
some conflicts between libraries could appears...

> Load tests?

COVERAGE TESTS (1/2)

" Knowing the number of lines of codes tested when
all the tests are wusing (unit, functional or
performance)

https://coverage.readthedocs.io/en/coverage-4.5.1a

https://coverage.readthedocs.io/en/coverage-4.5.1a/

COVERAGE TESTS (2/2)

" According to my experience, with less than 60%
of covered code, the chance of having hidden

bugs is very important

Target 80% of
covered code

" A good target is 80% of covered code

GUI TESTS

® Test the GUI

Either manual
Or use tool like UFT (previous name: QTP)

" Allow to automate test as if it was done by a
user

A C
cor

HUMAN TESTS

eveloper tests the code from a way which
responds to the implementation he done, a

red

user tests according to its habits

Update GUI controls, click... raise events and
code execution and the order of calls can

change the behavior
human add random part inside tests

PERIMETER

PERIMETER?

ENVIRONMENT

PROCESSOR

PYTHON
DISTRIBUTION

TOOLING

WHAT MODULES ARE LOADED? (1/2)

= Standard modules in Python?

" Modules which were developed in intern?

= \What are the external modules?

WHAT MODULES ARE LOADED? (2/2)

" How to determine the list of dynamically loaded
modules... Available since Python 2.3.

import re, itertools

try:
import baconhameggs
except ImportError:

pass

try:
import guido.python.ham
except ImportError:

pass

from modulefinder import ModuleFinder

finder = ModuleFinder ()
finder.run script('bacon.py')
print 'Loaded modules:'
for name, mod in finder.modules.iteritems/() :
print '&s: ' % name,
print ', '.join(mod.globalnames.keys () [:3])

print '-'*50
print 'Modules not imported:'
print '\n'.join(finder.badmodules.iterkeys())

AND THEN: PROBLEMS?...

® |5 there module:

with ended support or unmigrated?
with modified API?
icencing changed?
iIbrary name changed?

NON-PYTHON MODULES

= Problems with C/C++ written modules

C++ compiler migration
porting C++ libraries
tools problems (swig...)
licences, etc...

MIGRATION
METHODOLOGY

= « Divide to reign »: it will be
better to migrate small groups of
files to minimize interactions.

SPLIT IN

BUNDLES

" Create bundles in using module
dependencies (have a graph
should be wuseful), internal or
external module...

PORTING EXTERNAL CODE (1/2)

= External code has no dependency with house-made
code: start with them will be a good idea.

= Take count of tools:

Compiler

Integration tools in Python: swig, boost.python,
etc.

External libraries

PORTING EXTERNAL CODE (2/2)

Library was ported or not?

AP| changed?
Licensing changed?

s there constraints according to the versions of
different libraries?

|s source code available ?

ADD PYTHON 3.X CHANGES INSIDE
PYTHON 2.X CODE (1/3)

" from future im
PEP 238: Changing t

nort division

ne Division Operator

" from future import print_function

PEP 3105: Make print a function

ADD PYTHON 3.X CHANGES INSIDE
PYTHON 2.X CODE (2/3)

" from future import absolute import
PEP 328: Imports: Multi-Line and Absolute/Relative

" from future import unicode literals
PEP 3112: Bytes literals in Python 3000

ADD PYTHON 3.X CHANGES INSIDE

PYTHON 2.X CODE (3/3)

m Six : six.readthedoc.io

Python 2

from urllib2 import urlopen
my url = "http://myurl.net’

try:
X = urlopen[my url].read()
print X

except Exception, e:
raise IOError, 'Error 404°

Python 3 Six to add 3.X features in 2.X code
from urllib.request import urlopen from six.urllib.request import urlopen
my url = "http://myurl.net’ my url = "http://myurl.net’
try: try:
X = urlopen[my url].read() X = urlopen[my url].read()
print(x) print(x)

except Exception as e: except Exception as e:
raise IOError('Error 404'") raise IOError('Error 404'")

TOOLS (1/2)

mathilde@pc-moi~ 2t03 example.py
RefactoringTool: Refactored example.py
--- example.py (original)

+++ example.py (refactored)

@@-19+19 @@

- from urllib2 import urlopen
+ from urllib.request import urlopen

my_url = “http://pythonprogramming.net”

try:
x = urlopen[my_url].read()

- printx

-except Exception, e:

- raise |OError, "Error 404"
+ print(x)

+except Exception as e:

+ raise |IOError("Error 404")

RefactoringTool: Files that need to be modified:
RefactoringTool: example.py

mailto:mathilde@pc-moi

TOOLS (2/2)

m)t06

> Based on 2to3

» For compilancy between 2 and 3
» Add future |, six

REFACTORING

REFACTORING (1/6)

= |istdir vs scandir

PATH = "C:\\Tools\\Anaconda3" PATH = "C:\\Tools\\Anaconda3"
def nb_file_listdir(path, ext): def nb_file scandir(path, ext):
nb = @ nb = ©
for name in listdir(path): for entry in scandir(path):
fname = F"{path}\\{name}" if entry.is_dir():
if isdir(fname): nb += nb_file_scandir(entry.path, ext)
nb += nb_file_listdir(fname, ext) else:
else: r, e = splitext(entry.name)
r, e = splitext(name) if e.lower() == ext:
if e.lower() == ext: nb += 1
nb += 1 return nb
return nb print(nb_file_scandir(PATH, ".py"))

print(nb_file_listdir(PATH, ".py"))

Fan
Fonction/Module Appel Durée totale Durée locale

nb_file listdir 18214 7.14 sec 212.04 ms
nb_file scandir 18214 1.54 sec 572.59 ms

REFACTORING (2/6)

= Use generators

def frange(a, b, n): a=0
h=(b-a)/n b =1
for 1 in range(n+l): n = 10
yielda+i*h h=(b—a),fn
. for x in (a + 1 * h for 1 in range(n+l)):
for x in frange(©, 1, 10): orint(x)

print(x)

REFACTORING (3/6)

= Comprehension containers

A=11,2,3,4]
B = {}

for x in A:
B[str(x)] = x

[1, 2, 3, 4]
{ str(x): x for x in A }

W >
nn

REFACTORING (4/6)

" String format

name = “Toto”
“My name is %s”’ % (name) # since 1.x
“My name is {}"’.format(name) # since 2.0

"My name is {name}’ # since 3.6

REFACTORING (5/6)

" J|IT compiler: numba

from numba import jit

def fibl(n): @jit
if n < 2: def fib2(n):
return n if n < 2:
return fibl(n - 1) + fibl(n - 2) return n
print(fib1(35)) return fib2(n - 1) + fib2(n - 2)

print(fib2(35))

Y

Fonction/Module Durée totale Durée locale
fib1 5.52 sec 5.52 sec
_find_and load 353.08 ms 2.87 ms
_handle_fromlist 342.76 ms 1.54 ms
_compile_for_args 119.95 ms 7.76 us
fib2 69.17 ms 69.17 ms

jit 23.36 ms 10.93 us

REFACTORING (6/6)

" Cache strategy

from functools import lru_cache as cache

@cache(maxsize=None)
def fib(n):
if n<2:
return n
return fib(n-1) + fib(n-2)

x = [fib(1i) for 1 in range(35)]
print(x)

AND NOW...

" Migrations are like children: each of them is
different

= Splitin steps...
» After each step, TEST!!!!

" You will have difficulties but keep hope.

_I'I

j&d ENABLER

CONTACT

Philippe BOULANGER
Python Expertise Manager
Philippe.boulanger@invivoo.com

9 PARIS ¥ BORDEAUX ¥ LONDRES
13, Rue de Rue Lucien Landsdowne House / City Forum
I'abreuvoir Faure 250 City Road - London EC1V
92400 Courbevoie 33000 2PU

Bordeaux

mailto:benjamin.rault@invivoo.com
http://www.invivoo.com/
http://www.blog.invivoo.com/
http://www.xcomponent.com/

