
Big forms
with JSON schemas

and Transcrypt
November 15th, 2018

Philippe Entzmann

 pyparis 2018 | big forms with json-schema and transcrypt | 2

Reinsurance of car insurers

 pyparis 2018 | big forms with json-schema and transcrypt | 3

Victim’s injuries follow-up

Yearly evaluation over lifespan.

Detailed expenses tracking of
physical and non-physical injuries
to the victim and its relatives.

Reference to mortality tables and currency rate.

A lot of differently structured data to collect.

 pyparis 2018 | big forms with json-schema and transcrypt | 4

From written forms to a database

Written big forms from different sources and different shapes consolidated in a
single database.

The data schema will highly evolve over time. Our experts have to manage the
data schema themselves :

● add fields, nested fields, list, set properties, ...
● split the whole schema in reusable parts
● define simple but usefull formulas

Each form may use 30 reusable sub-form parts leading to 300 base fields per
form for a filled document of more than 1000 fields.

 pyparis 2018 | big forms with json-schema and transcrypt | 5

From schema to web form

We choose the excellent json-editor library :

“JSON Editor takes a JSON Schema and uses it to generate an HTML form.”

Write the business
rules in javascript

https://github.com/json-editor/json-editor
https://json-schema.org/

 pyparis 2018 | big forms with json-schema and transcrypt | 6

It worked

 pyparis 2018 | big forms with json-schema and transcrypt | 7

It worked but at a cost ...

 pyparis 2018 | big forms with json-schema and transcrypt | 8

3000 LOC of clumpsy javascript business rules

 pyparis 2018 | big forms with json-schema and transcrypt | 9

Don’t ask non-dev to mess up with javascript

 pyparis 2018 | big forms with json-schema and transcrypt | 10

Hiding the javascript quirks with python

Move from JSON
to YAML format :

- type: object
- title: Person
- properties:
 - name:
 - type: string

Rewrite the business
rules from javacript
to python.

Run them on the
browser with
Transcrypt.

 pyparis 2018 | big forms with json-schema and transcrypt | 11

Better, stronger, faster, shorter

json-schema in YAMLjson-schema in JSON

 pyparis 2018 | big forms with json-schema and transcrypt | 12

Better, stronger, faster, shorter

 pyparis 2018 | big forms with json-schema and transcrypt | 13

Feedback of our Transcrypt experience

1. Easy Transcrypt setup
2. Accessing DOM and JS objects
3. Calling JS from python and python from JS
4. eval() missing
5. Python object overloading
6. Example formulas
7. Unit tests with pytest
8. End-to-end tests with pytest/splinter/selenium
9. Debugging with or without sourcemap

10. Watch files for transpilation
11. Transcrypt overhead
12. Transcrypt alternatives

 pyparis 2018 | big forms with json-schema and transcrypt | 14

Easy Transcrypt setup

$ pip install transcrypt

$ transcrypt hello

$ python3 -m http.server

<< install (+java for clojure minification)

<< transpile hello.py to javascript

<< serve static content

 pyparis 2018 | big forms with json-schema and transcrypt | 15

Accessing DOM
and JS objects

 pyparis 2018 | big forms with json-schema and transcrypt | 16

Calling JS from python and python from JS

 pyparis 2018 | big forms with json-schema and transcrypt | 17

eval() missing

Evaluating our formulas is easy with eval()

The single disappointment in our experiment :
eval() is not implemented in Transcrypt

You must use the transpiler server-side only.

So we had to parse and evaluate our formulas in python.

 pyparis 2018 | big forms with json-schema and transcrypt | 18

Python object overloading

Transcrypt is very close to Python regarding subclassing, overloading,
compositing objects.

We implemented a simple formula parser and a schema/document walker.

All the python tricks we needed worked :
__get__, __missing__, __setitem__, __iter__, __contains__, ...

 pyparis 2018 | big forms with json-schema and transcrypt | 19

Example formulas

Simple formula : AMOUNT * QTY
refering to nearby fields

Dot notation formula : sum(HOSP.NB * HOSP.AMOUNT)
refering to array and doing matrix operation

Custom function : my_special_pricer(x, y, z)
defined in Python (Transcrypt)

 pyparis 2018 | big forms with json-schema and transcrypt | 20

Relative json pointer support

We plan to support the draft proposal relative-json-pointer that will help for
some complex cases of relative references.

Example :

https://json-schema.org/latest/relative-json-pointer.html

 pyparis 2018 | big forms with json-schema and transcrypt | 21

Unit tests with pytest

Formulas in schema are tested.

Dozens of tests, easely readable and writable
by the business experts.

Run on CPython.

/schema/simple.yaml

 pyparis 2018 | big forms with json-schema and transcrypt | 22

End-to-end tests with selenium

Same tests !

Automatically transpiled to Javascript
and run on a real broswer with selenium, splinter
and pytest.

Chrome headless mode for running on CI jobs.

/schema/simple.yaml

 pyparis 2018 | big forms with json-schema and transcrypt | 23

Sourcemap debugging

transcrypt -m hello

 pyparis 2018 | big forms with json-schema and transcrypt | 24

Debugging without sourcemap

transcrypt -a -n hello

 pyparis 2018 | big forms with json-schema and transcrypt | 25

Watch file for transpilation

Static transpilation not an option in our case since users can change python
source (schema formula)

Watch and transpile : run transcrypt again on any file change
entr or inotify tools

 pyparis 2018 | big forms with json-schema and transcrypt | 26

Transcrypt overhead

The minified JavaScript code for each of your own modules is roughly just as
large as the Python source code. On top of that there's a one time overhead of
20kB for Transcrypt's core and built-ins. Should you use the JavaScript 5 to 6
translator, that adds an extra 10kB. For larger projects, the overhead becomes
negligeable. A project with a Python source of say 600kB tends to result in a
dowload of about equal size. Moreover Python sourcecode for a certain
application tends to be smaller than handwritten JavaScript source code for the
same problem, due to language constructs like list comprehensions, but also due
to facilities like class based OO and multiple inheritance. As far as speed is
concerned, in most cases it is roughly equal to the speed of hand-written
JavaScript. [..]

from Transcrypt’s FAQ

https://transcrypt.org/documentation

 pyparis 2018 | big forms with json-schema and transcrypt | 27

Transcrypt alternatives

● transcrypt : transpiler, partial python support, numpy port
● rapidscript : transpiler, support eval() !
● brython : full python interpreter
● pyodide : WASM based
● batavia : python VM, run python bytecode, not source !

● pyjs : full python interpreter ?
● pypyjs : full python interpreter, emscripten/ASM based
● jiphy : transpiler, too limited

https://transcrypt.org/
https://github.com/kovidgoyal/rapydscript-ng
https://brython.info/
https://github.com/iodide-project/pyodide
https://pybee.org/project/projects/bridges/batavia/
http://pyjs.org/
https://pypyjs.org/
https://github.com/timothycrosley/jiphy

 pyparis 2018 | big forms with json-schema and transcrypt | 28

Being able to push Python in the browser helps us to add features to our automatically generated
big forms.

Transcrypt saves us from the two languages pitfall in a critical part of our project. The overhead
induced is negligeable in our case.

We are closing gaps between the front-end and back-end developement by sharing the same
languages and test framework.

 pyparis 2018 | big forms with json-schema and transcrypt | 29

Python everywhere, really ?

So we get python on the browser and we’re happy with it.

Lonely trick or real trend ?

We think it’s a bold move for a good reason :

All the technologies are moving faster …

… but our brain is not !!

 pyparis 2018 | big forms with json-schema and transcrypt | 30

You can’t master many programming languages.
Non-developper can only learn a single trivial programming language.
Developpers and non-dev. must have a common programming language.
The toolset shared among the team must be as light as possible.

The Python language and eco-system is the best fit today.

 pyparis 2018 | big forms with json-schema and transcrypt | 31

Split the stack

Visible to anyone :

jupyter > YAML > pytest > xlwings
> python > json-schema > plotly > pandas

Must stay hidden except for devops :

transcrypt, cpython, anaconda, mongo, docker,
kubernetes, flask, swagger, angular, bootstrap, caddy,
docker-compose, pyinstaller, git, dash, python-pptx,
dramatiq, secretary, gitlab, javascript, ...

 pyparis 2018 | big forms with json-schema and transcrypt | 32

Thank you !

philippe@phec.net

Image credits :

● Car top view by qubodup
● Motor vehicle accident illustration by oksmith
● Injured illustration by oksmith
● Head with brain silhouette illustration by monstara, GDJ

mailto:philippe@phec.net
https://openclipart.org/detail/234440/white-blank-racing-car-top-view
https://openclipart.org/detail/285067/motor-vehicle-accident
https://openclipart.org/detail/285043/injured
https://openclipart.org/detail/285043/injured
https://openclipart.org/detail/240431/man-head-silhouette

