
A Short History of Array Computing
in Python
Wolf Vollprecht, PyParis 2018

TOC - Array computing in general
- History up to NumPy
- Libraries “after” NumPy

- Pure Python libraries
- JIT / AOT compilers
- Deep Learning

- NumPy extension proposal

Arrays

- Used practically in all scientific domains
- Physics, Controls, Biological System, Big Data, Deep

Learning, Autonomous Cars …

Array computing

Generalize operations on scalars to … Arrays

C ← A + B

What is an
n-dimensional
Array?

- memory region (buffer)
- dimension
- shape
- Often strides

Layout Row Major (C) 0 1 2 3 0 1 2 3 4 5 6 7 8 9 10 11
Shape 3, 4 4 5 6 7

Strides 4, 1 8 9 10 11

Layout Col Major (F) 0 1 2 3 0 4 8 1 5 9 2 6 10 3 7 11
Shape 3, 4 4 5 6 7

Strides 1, 3 8 9 10 11

4 el’s

1 el

1957 / 1977 Fortran 77

- One of the oldest languages for scientific computing
- Still a reference in benchmarks
- Original implementation of BLAS & LAPACK in Fortran
- Maximum of 7 dimensions

1966 APL: Honorable Mention

- Seriously dense language

→ Try it online: https://tryapl.org/

1987 Matlab

- Proprietary software from Mathworks
- Dynamic interface to Fortran
- Pioneered interactive

computing + visualization

1995 Numeric

- Python numerical computing package
- Inspired additions to Python (indexing syntax)

~2003 NumArray

- More flexible than Numeric
- Slower for small arrays, better for large arrays
- Split in the community:

- SciPy remained on Numeric...

2006: NumPy

- “Merge” of Numeric and NumArray
- Fast & flexible array computing in Python
- Typed memory block
- Notion of broadcasting
- Vector Loops in C

NumPy Broadcasting

- Broadcasting: what to do when dimensions don’t match
up?

NumPy ufunc

- Function that has specified input/output
- np.sin:

- nin = 1, nout = 1
- signature: f -> f, d -> d...

- np.add:
- nin = 2, nout = 1
- signature: ff -> f, dd -> d...

NumPy as a Standard

- Computing needs have shifted
- More specialized data containers needed
- Parallelization, speed, GPU, data size …

NumPy interface de-facto standard!

2007 numexpr

- Avoid temporaries
- R = A + B + C

-> T1 = B + C
-> T2 = A + T1
-> R = T2

- Evaluate in chunks

2007 numexpr

2014 Dask

- Distributed array computing
- Can handle large data
- Execution of function

distributed

2014 Dask

2017 pydata/sparse

- Support for sparse ndarrays
- Advantages

- Higher data compression
- Faster computation

- Reuses scipy.sparse (but nD!)

2017 pydata/sparse

- Store data in COO (coordinate list) model

GPUs for computation

- Massively parallel
- Great for large data
- Cost of memory transfer from CPU → GPU
- Other programming model

2015 CuPy

- CUDA-aware NumPy implementation
- Part of the Chainer DL framework

2017 xnd

3 libraries:

- ndtypes: shape, type & memory
- gumath: dispatch math functions on memory container
- xnd: python bridge for typed memory

JIT & AOT compilers

- Just in Time compilation for numeric code
- Can give incredible speed ups

2012 Pythran

- A Python/NumPy to C++ AOT compiler
- Supports high level optimizations in Python
- C++ implementation of NumPy with expression

templates
- Cython integration

(Don’t miss the talk by Serge later today!)

2012 Pythran

2012 Numba

- A Python to LLVM JIT
- Takes Python and compiles it to Machine Code
- GPU support (Cuda + AMD)
- For High Performance: need to write explicit “for” loops

2012 Numba

Numba + ufunc

Numba + GPU

The AI winter is over …

- Deep learning revolution
- Python ecosystem benefits heavily
- Lot’s of array computing

Computation Graph

a = b = input
c = a + b
d = b + 1
e = c * d

Computation Graph

- Abstraction of computation
- Benefit: allows automatic differentiation
- Optimization opportunities

- Common Subexpression Elimination
- Algebraic simplifications: (y * x) / y → (x)
- Constant folding (2 * 3 + a) → (6 + a)
- Fuse ops

2007 Theano

- One of the first “Deep Learning” libraries
- Works on a computation graph
- Lazy evaluation
- Compiles kernels to C & CUDA

2015 TensorFlow

- Big library from Google
- Killed many others (including Theano)
- Same principle as Theano
- At the beginning: no compilation stage

2015 TensorFlow

2015 TensorFlow + XLA

- An experimental compiler for TensorFlow graphs
- JIT + AOT modes
- Uses LLVM under the hood

2016 PyTorch

- Deep Learning Framework from Facebook
- Computation Graph, but dynamic (no deferred graph

model)
- Easier to have control flow

PyTorch JIT & TorchScript

- Subset of Python that can be compiled
- Generates CUDA & CPU code

Conclusion

- NumPy is the best … API
- Many NumPy implementations
- Many downstream projects

- Pandas
- xarray
- scikit-..., scipy

The array extension proposal

- 6 months ago started by M. Rocklin
- Problem: it’s hard to write generic code
- Already extension points: __array__, __array_ufunc__

The array extension proposal

- E.g. CuPy input → CuPy output desired
- Arguments allowed to overload __array_function__

NEP 18
numpy.org/neps/nep-0018-array-function-protocol.html

Trends

● Ecosystem has become much richer in the past years
● More compilation
● More specialized NumPy implementations
● __array_function__ will make it easy to write

implementation independent code

Thanks

● Questions?

Check out xtensor & xtensor-python

NumPy for C++ ;)

Follow me on Twitter @wuoulf or GitHub @wolfv

NumPy ufunc

- Automatic broadcasting
- ufunc supports:

- __call__
- reduce
- reduceat
- accumulate
- outer
- inner

